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a b s t r a c t

We analyze human poses and motion by introducing three sequences of easily calculated surface de-
scriptors that are invariant under reparametrizations and Euclidean transformations. These descriptors
are obtained by associating to each finitely-triangulated surface two functions on the unit sphere: for
each unit vector u we compute the weighted area of the projection of the surface onto the plane
orthogonal to u and the length of its projection onto the line spanned by u. The L2 norms and inner
products of the projections of these functions onto the space of spherical harmonics of order k provide
us with three sequences of Euclidean and reparametrization invariants of the surface. The use of these
invariants reduces the comparison of 3D+time surface representations to the comparison of polygonal
curves in Rn. The experimental results on the FAUST and CVSSP3D artificial datasets are promising.
Moreover, a slight modification of our method yields good results on the noisy CVSSP3D real dataset.

© 2021 Elsevier Ltd. All rights reserved.
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1. Introduction

Comparing 3D surfaces is a challenging problem lying at the
eart of many primary research areas in computer graphics, com-
uter vision applications and medical applications. The main
ifficulty when comparing two triangulated surfaces is that their
riangulations do not necessarily have the same number of trian-
les and, even if they did, there is no natural way to discern what
he corresponding triangles would be in each triangulation. The
oal of analyzing shapes of surfaces modulo re-triangulations or
eparametrizations – their continuous analogues – leads to enor-
ous computational challenges. These are further complicated by

he need in many applications to identify surfaces that differ only
y Euclidean transformations and similarities.
A particularly elegant mathematical approach to the problem

f comparing surfaces is to consider the quotient of the space
f embeddings of a fixed surface S into R3 by the actions of

the orientation-preserving diffeomorphisms of S and the group
f Euclidean transformations, and provide this quotient with the
tructure of an infinite-dimensional orbifold. We can then define
nd use Riemannian metrics on this orbifold to measure the
istance between two given shapes as well as to interpolate

∗ Corresponding author.
E-mail address: emery.pierson@univ-lille.fr (E. Pierson).
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between them by computing the (generally unique) geodesic that
joins them [1,2]. Another exciting approach is that of square
root normal fields or SRNF in which different embeddings and
immersions of the surface S modulo translations are described
by points in a Hilbert space, and both rotations in R3 as well
s reparametrizations of the surface translate into orthogonal
ransformations in the Hilbert space [3]. Both approaches are very
eneral and, in theory at least, permit the perfect or nearly perfect
omparison of large classes of shapes. Nevertheless, there are
any situations were we would need or prefer a quicker and

ougher tool to distinguish, classify, or retrieve shapes from a
estricted population of surfaces. An example of such a situation
s the subject of this work: the classification and retrieval of
uman poses and actions. Furthermore, the articulation of the
uman body enables it to adopt a great variety of poses with
ery small changes to the intrinsic geometry of the surface that
odels it. In flexing an arm or a leg we mostly see small intrinsic
hanges due to the bulging and stretching of muscles, but the net
esult in terms of the extrinsic geometry of the body can be sub-
tantial. Small changes in the intrinsic geometry may even lead
o apparent changes in the genus of the human figure through
opological noise when, for instance, hands are clasped or feet and
egs are crossed. This points to the unsuitability of approaches
hat we will call intrinsic, and which are focused on the metric
elations (lengths of curves, angles, and areas) on the surface itself

ndependently of the embedding into the ambient space.

https://doi.org/10.1016/j.cag.2021.10.012
http://www.elsevier.com/locate/cag
http://www.elsevier.com/locate/cag
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2021.10.012&domain=pdf
mailto:emery.pierson@univ-lille.fr
https://doi.org/10.1016/j.cag.2021.10.012
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Fig. 1. Four human poses from the FAUST dataset along with their
corresponding convex hulls.

In the analysis and retrieval of human actions we must work
ith sequences of a hundred human poses, and each pose is
epresented by a triangulated surface containing thousands or
ens of thousands of vertices. This computational complexity is
evertheless offset by the fact that human poses are modeled
y a rather restricted population of surfaces. Examination of the
atabases led us to formulate the hypothesis that a human pose is
early characterized by its convex hull. The intuition is that if you
nclose someone in a tight, perfectly elastic sheet, the different
oses of this person will still be distinguishable, or mostly so
see Fig. 1). In considering human body motion, where there is
sequence of poses, the probability of recognition of the action

rom the associated sequence of convex hulls should be even
reater, or so the intuition goes.
This convexity hypothesis led to the idea of considering two

f the most basic notions in convex geometry, the convex hull
nd the surface area measure or extended Gaussian image (EGI),
nd molding them into three sequences of numerical surface
escriptors that are invariant under Euclidean transformations.
e do this by first encoding the information of the convex hull

n the breadth function, which measures the length of the pro-
ection of the surface onto each line passing through the origin,
nd encoding the information of the EGI in the weighted area
unction, which for each direction measures the weighted area
f the projection of the surface onto the plane perpendicular
o it (see Section 3 for details). These functions only depend
n symmetrizations of the convex hull and EGI (Proposition 3.2
nd Theorem 3.5), but are supplementary (i.e., two non-convex
urfaces with the same symmetrized convex hull are not likely
o have the same symmetrized EGI) and lend themselves nicely
o Fourier analysis. Our three sequences of numerical shape de-
criptors are obtained as the L2 norms and inner products of
he projections of these functions onto the space of spherical
armonics of order k. In geophysics terminology, these are the
ower spectra and the cross power spectrum of our two functions
[4,5], and see [6] for the introduction of this idea in the context
f shape matching).
 o
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The main concern of this paper is the problem of analyzing
human motion and our numerical descriptors conveniently allow
us to reformulate it as a problem of comparing polygonal curves
in Rn. In this familiar setting we make use of dynamic time warp-
ing (DTW) to compare the curves obtained from the CVSSP3D real
and synthetic datasets [7].

In this paper we did not pay close attention to the effect that
noisy data could have on our methods and to the interesting
problem of how to make them more robust, but we did test them
against the relatively noisy CVSSP3D real dataset (see Table 5)
and remarked that a slight modification to our breadth function
to make it more robust yielded good results.

Overall, the contributions of this paper can be summarized as
follows.

• We present a novel set of descriptors invariant under
parameterization, Euclidean transformations, and scaling.

• We formulate the problem of comparing sequences of 3D
human surfaces as a problem of comparing curves in Rn.
Dynamic Time Warping (DTW) is proposed for temporal
alignment of these curves.

• The method shows promising results for 3D pose and 3D
motion retrieval tasks in several datasets. The results are
promising and validate our hypothesis that the analysis
of human action can be in good measure reduced to the
analysis of sequences of convex hulls of human poses. The
experimental results show that our method can be imple-
mented in a computationally efficient way due to its simple
formulation.

lan of the paper. In Section 2, we review some recent works
hat have tackled the same or related problems. In Section 3
e present the mathematical foundation of our work and the
onstruction of the three sequences of Euclidean and shape in-
ariants. This section culminates with the definition of the feature
ectors and polygonal curves with which we analyze surfaces and
urface motions. The experimental setup is described in Section 4.
here we present the evaluation criteria, the datasets, and the
esults of static pose analysis on the FAUST dataset before moving
n to tackle the dynamic analysis of motion in the CVSSP3D
ynthetic and real dataset. Finally, we present the mean compu-
ation times for the construction of the different polygonal curves
ssociated to the human motions in the various datasets. Lastly,
onclusions and discussion are reported in Section 5.

. Related work

.1. Static geometric descriptors

The challenge in comparing two shapes is to find the best
easure of similarity over the space of all transformations. The
eed for efficient retrieval makes it impractical to explicitly query
gainst all transformations, and two different approaches have
een proposed. In the first approach shapes are placed into a
anonical coordinate frame (normalizing for translation, scale and
otation) and two shapes are assumed to be aligned when each
s in its own frame. Thus, the best measure of similarity can
e found without explicitly trying all possible transformations.
he second approach describes 3D models through a geometric
nvariant descriptor so that all transformations of a model result
n the same descriptor. Some descriptors are shown in Table 1,
hich describes how these methods address translation, scale
nd rotation. Other descriptors are intrinsic: they are defined by
ocal metric properties on the surface itself and, therefore, have
atural translation and rotation invariance. They are better suited
or shape retrieval than for pose retrieval since the intrinsic ge-

metric differences of the surfaces modeling the human body in
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able 1
summary of a number of shape descriptors, showing whether they are

I)nvariant with respect to translation, scaling and rotation, or whether they
equire (N)ormalization.
Representation Tr Sc Rot

Shape Distributions [6,9] I N I
Extended Gaussian Images [6,10] I N N
Shape Histograms [6,11] N N N
Heat Kernel Signatures [12,13] I N I
Wave Kernel Signature [14] I I I
ShapeDNA [15] I N I
GDVAE [16] (Deep learning) I N I
Neural3DMM [17] (Deep learning) N N N

different poses are not necessarily significant. Examples of these
descriptors are HKS, WKS and ShapeDNA, presented in Table 1.
We refer the reader to [8] for an extensive review and comparison
of such descriptors.

2.2. Deep learning

Deep learning for 3D human poses attracts more and more
ttention. These new approaches require the reformulation of
everal deep learning operations, such as regular convolution and
ooling/unpooling to the non-regular mesh. Bronstein et al. [18]
ive a comprehensive overview of the generalization of CNNs
n non-Euclidean manifolds. More recently several deep learning
pproaches propose to learn a latent representation with disen-
angled shape and pose components. Zhou et al. [17] propose
n auto-encoder model that disentangles shape and pose for 3D
eshes in an unsupervised manner. However, the proposed neu-

al network requires mesh correspondence, while our approach
oes not. Aumentado-Armstrong et al. [16] propose a two-level
nsupervised Variational Autoencoder (GDVAE), with a disentan-
led latent space. They utilize point cloud data to learn a latent
epresentation of 3D human shape and thus require training to
ncode the shape and the pose. They utilize the fact that isomet-
ic deformations preserve the spectrum of the Laplace–Beltrami
perator (LBO). The LBO is a popular way of capturing intrinsic
hape. However, the spectrum is very sensitive to noise as shown
n our experiments.

.3. 3D shape sequence retrieval

Huang et al. [19] extended shape distribution, Spin Image,
nd spherical harmonics to 3D human motion retrieval. These
hape descriptors are not necessarily related to the geometry
f human body. Slama et al. [20] propose a 3D human motion
nalysis framework for shape similarity and retrieval. The shape
escriptor, called Extremal Human Curve (EHC), is a set of 10
urves which connect the extremal points of the 3D human
urface. The authors of [20] propose a geometric approach for
omparing the shapes of human surfaces via EHC. They exploit
he fact that curves can be parametrized canonically and thus
an be compared naturally. However, the need of the detection
f extremal points makes this approach sensitive to the noise
nd to the low quality of the meshes. In addition, the comparison
etween pairs of curves increase the computational cost. Another
nteresting approach is presented by Luo et al. [21], where they
ompute a spatio-temporal graph of 3D Human motion. How-
ver, this approach also suffers from being time consuming, and
eeds the same parameterization along a dataset to perform well.
n [22] six static shape descriptors are extracted from each mesh
f the human sequence and DTW is used as similarity measure,
efore proposing to add other information like centroid position
nd speed. However, some descriptors used in this approach
equires a pose normalization for each mesh per frame using two
ariations of PCA.
47
3. Projection-based classification of surfaces

3.1. The breadth representation

As we mentioned in the introduction, the guiding idea of this
paper is that human poses seem to be determined to a great
extent by their convex hulls (see Fig. 1). In order to quantify
and test this hypothesis, we consider the support and breadth
functions of the triangulated surfaces that model the human form.

Definition 3.1. The support function of a set S ⊂ Rn evaluated at
the unit vector u ∈ Sn−1 is the quantity

h(S; u) := sup
x∈S

u · x.

The breadth of the set S ⊂ Rn in the direction given by the unit
vector u ∈ Sn−1 is the quantity

b(S; u) := h(S; u) + h(S, −u) = sup
x∈S

u · x − inf
x∈S

u · x .

Geometrically speaking, the breadth of a path-connected set
n a direction u is simply the length of the orthogonal projection
f the set onto a line parallel to u. As the following classic result
hows, the support function is a way to encode the convex hull.

roposition 3.2. Two sets S1, S2 ⊂ Rn have the same support
unction if and only if their convex hulls are equal. Their breadth
unctions are the same if and only the convex hulls of the sets S1−S1
nd S2 − S2 are equal.

roof. The convex hull of a set is the intersection of all half-
paces that contain it. From the definition of the support function,
or each unit vector u, the half-space

(S; u) := {x ∈ Rn
: u · x ≤ h(S; u)}

ontains S and is minimal in the sense that it is the unique
alf-space that contains S and is contained in H(S; u). From this
erspective, the support function is just a way to encode the set of
inimal half-spaces, and thus the set of all half-spaces, that con-

ain S. It follows that the support function of a set characterizes
ts convex hull.

From the linearity of the functions x ↦→ u ·x and the definition
f support function, we have that if A and B are two subsets of
n, and λ1 and λ2 are two positive numbers, then

(λ1A+ λ2B; u) = λ1h(A; u)+ λ2h(B; u) and h(−A, u) = h(A; −u).

rom this we conclude that the breadth function of a set S is also
he support function of S − S:

(S; u) = h(S; u) + h(S; −u) = h(S − S; u). □

Unlike the breadth function, the support function is not invari-
nt under translations. This can be fixed by moving the center of
ass to the origin. Generally speaking, there is less loss of infor-
ation when working with the support function than with the
readth function, and this should come up in comparing surfaces
hat have a central symmetry to those that do not. However, for
omparing human figures this did not seem to be the case and
e made the choice to work with the breadth function to keep
ithin a geometric tomography framework of studying human
hapes through their projections onto lines and planes.
Using that triangles are convex and that the functions x ↦→ u·x

u ∈ S2) are linear, the breadth of a triangulated surface M ⊂ R3

an be easily computed from just the knowledge of its vertex
oints x1, . . . , xN :

(M; u) := max
1≤i≤N

u · xi − min
1≤i≤N

u · xi .
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.2. Area representation

Another classical descriptor of convex bodies and surfaces is
he surface area measure or, as is better known in computer vision,
he extended Gaussian image (EGI). This is the push-forward of the
wo-dimensional Hausdorff measure of the surface onto the unit
phere under the Gauss map. For a triangulated surface, we can
ive a more pedestrian equivalent formulation:

efinition 3.3. Given an oriented triangulated surface M ⊂ R3

ormed by a union of triangles T1 . . . , Tm, its extended Gaussian
mage is the measure on the unit sphere

M :=

m∑
i=1

area(Ti) δni ,

here ni is the unit vector perpendicular to Ti in the sense defined
y the orientation of the surface and δni is the delta measure
oncentrated at ni.

There are a number of ways to extract feature vectors from the
GI of a surface. We can, for instance, manufacture them from
he moments or the Fourier transform of this measure, but in
his work we chose a more intuitive descriptor: the weighted area
unction.

efinition 3.4. Given an oriented triangulated surface M ⊂
3 formed by a union of triangles T1 . . . , Tm, its weighted area
unction is the function on the unit sphere defined by

(M; u) :=

m∑
i=1

|u · ni| area(Ti),

here ni is a unit vector perpendicular to the triangle Ti.

The quantity A(M; u) is the weighted area of the projection of
M onto the plane orthogonal to u. By weighted area we mean that
if k different portions of a surface project onto the same piece of
plane, the area of this piece is multiplied by k.

Besides being invariant under reparametrizations and transla-
ions, the weighted area function is easy to grasp geometrically
nd very quickly computed. Its relation to the EGI of the surface
ollows directly from the definitions:

(M; u) =

∫
S2

|u · n| dµM .

his expression immediately implies that surfaces with the same
GI are indistinguishable by the weighted areas of their projec-
ions. Moreover, because the functions x ↦→ |u · x| (u ∈ S2) are
ven, we only see the even part of the measure µM ,

e
M =

1
2

m∑
i=1

area(Ti) (δni + δ−ni ).

t follows that if the even parts of the surface area measures
f two oriented surfaces are the same, then their weighted area
unctions are identical. This is all: by a theorem of Choquet ([23,
. 53]), finite linear combinations of the functions x ↦→ |u · x|

(u ∈ S2) are dense in the space of even continuous functions on
the sphere, and hence if the integrals of all functions of this form
with respect to two even measures are the same, the measures
must be the same. We summarize:

Theorem 3.5. Two oriented triangulated surfaces M1,M2 ⊂ R3

are indistinguishable by the weighted areas of their projections if
and only if the even parts of their extended Gaussian images are the
same.
48
Fig. 2. Different poses with the same weighted area function, but with different
breadth functions.

Table 2
Results on pose retrieval for FAUST dataset.
Representation NN FT ST

Areas 62 50.0 67.2
Breadths 83 63.1 76.6
Areas & Breadths 86 67.9 80.9
GDVAE [16] 60 38.0 54.2
Zhou et al. [17] 82 69.2 83.4
SMPL pose vector 80 84.4 95.2

Fig. 3. The first two forms have the same convex hull and different weighted
area functions, while the last two forms have the same convex hull and EGI.

In order to use the weighted area function as a descriptor
it is important to understand that if we decompose a surface
into a finite or countable number of pieces each of which has a
computable area, translating these pieces or flipping them around
the origin, and then recomposing them again will give a new
surface whose projection onto any plane has the same weighted
area as that of the original surface. For instance, if we wish to
make use of this technique to classify poses of a human figure
it is useful to keep in mind the following rule of thumb: if we
approximate and decompose the human body as the union of
a number of boxes and then these boxes are moved by pure
translation and re-glued into a different pose, the method will not
effectively distinguish the old and the new poses. An important
example is a person standing up with the arms by his/her side
and the same person standing up with the arms straight up over
his/her head (see Fig. 2).

Because of this ‘‘cut-translate-and-paste" invariance, the
weighted area may not seem to be as good a descriptor as
the breadth, and indeed, that is what our results confirm (see
Table 2), but it is supplementary information and can be quite
discerning in its own right. The weighted area allows us to
distinguish some non-convex surfaces that have the same convex
hull or breadth function, and although it is possible for two
different non-convex surfaces to have the same convex hull
and EGI – and, a fortiori, the same breadth and weighted area
functions – without being translates (see Fig. 3 for a simple two-
dimensional example of these phenomena), that does not seem
to happen to any significant degree in the restricted population
of human poses. Nevertheless, the real advantage of considering
simultaneously the breadth and weighted area functions will be-
come clearer when we tackle the problem of extracting Euclidean
invariants from these functions.
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.3. Euclidean and shape invariants

In many applications it is not enough to be able to distinguish
r classify surfaces up to reparametrizations and translations.
ften we need to do so up to Euclidean transformations or up to
imilarities. In this section we describe a simple method to extract
equences of Euclidean and shape invariants from the area and
readth function of a surface.
Notice that if M ⊂ R3 is a surface and R is a 3 × 3 orthogonal

atrix, then

(RM; u) = A(M; R−1u) and b(RM; u) = b(M, R−1u)

or every unit vector u. In other words, the assignments M ↦→

(M; ·) and M ↦→ b(M; ·) are O(3)-equivariant maps between
he space of surfaces and the space L2(S2) of square-integrable
unctions on the sphere provided with the usual left O(3)-action
R, f ) ↦→ f ◦ R−1. The classic theory of spherical harmonics (see
ecture 11 of [24] for a particularly simple description) tells us
hat this space decomposes into the direct sum

2(S2) = R ⊕ V1 ⊕ V2 ⊕ · · · ,

here Vk is the (2k+1)-dimensional space of spherical harmonics
f order k (i.e., the restriction to the sphere of homogeneous
armonic polynomials of order k in R3). These subspaces are in-
ariant under the action of the orthogonal group and are mutually
rthogonal. It follows that if f is a square integrable function on
he sphere, we can decompose f = f0 + f1 + f2 + · · · with fk ∈ Vk,
nd that the L2 norm of each component fk, defined by

fk∥2
2 :=

1
4π

∫
S2

fk(u)2 dΩ,

s invariant under the orthogonal group. Notice that if the func-
ion f is an even function, all the odd terms, f2k+1, k ≥ 0, are
zero. This method to extract rotation invariants from spherical
functions is classical (see, for instance, [25]) and is widely used
in geophysics [4,5], but in the context of computer science it
seems to have been introduced in [6], where the term energy
epresentation of f is used for the sequence k ↦→ ∥fk∥2.

Applying this idea to the area and breadth functions of a
urface M we obtain two sequences of invariants

k(M) := ∥A2k(M; ·)∥2 and βk(M) := ∥b2k(M; ·)∥2.

o this we add the sequence γk(M) consisting of the inner prod-
cts of A2k(M; ·) and b2k(M; ·):

A2k(M; ·), b2k(M; ·)⟩2 =
1
4π

∫
S2

A2k(M; u)b2k(M; u) dΩ,

hich is also a Euclidean invariant of the surface M .
Using the equality

f + g∥
2
2 = ∥f ∥2

2 + 2⟨f , g⟩2 + ∥g∥
2
2,

e have that

k(M) =
1
2

(
∥A2k(M, ·) + b2k(M, ·)∥2

2 − α2
k (M) − β2

k (M)
)
.

It is not clear what is the geometric meaning of most of these
nvariants, but by the Cauchy–Crofton formula α0(M) is simply
one-fourth the area ofM , while β0(M) is (1/2π ) times the integral
f the mean curvature of M , provided the surface is convex (see
hapter 14 in [26]).
In practice we only know the values of the functions A(M; ·)

nd b(M; ·) on a finite set of grid nodes. Through the use of FFT
nd cubature formulas it is possible to numerically compute the
nvariants α (M), β (M), and γ (M) for 0 ≤ k ≤ l, where 16(l+1)2
k k k

49
s the number of nodes in our grid (see [27, pp. 2580–2581]).
hus, the l × 3 matrix

l(M) :=

⎛⎜⎝α0(M) β0(M) γ0(M)
...

...
...

αl(M) βl(M) γl(M)

⎞⎟⎠ ,

hich will be our basic Euclidean-invariant representation of
he surface M , can be effectively computed from the values of
he area and breadth functions of M over a uniform sample of
6(l + 1)2 points on the sphere.
To end this section we briefly discuss how to extend these

uclidean invariants to shape or similarity invariants, where we
llow for dilations as well as rotations and translations. To do this
e note that if λ is a positive real number, then

(λM; u) = λ2A(M; u) and b(λM; u) = λb(M; u).

t follows that

k(λM) = λ2αk(M), βk(λM) = λβk(M),

γk(λM) = λ3γk(M).

e can get rid of the dilation factor in a number of ways. For
nstance, for each k ≥ 0, the quantities

′

k(M) :=
αk(M)

∥A(M, ; ·)∥2
and β ′

k(M) :=
βk(M)

∥b(M; ·)∥2

are shape invariants of M , as is

γ ′

k(M) :=

 A2k(M, ·)
∥A(M, ·)∥2

+
b2k(M, ·)

∥b(M, ·)∥2


2
.

As the reader can see, γ ′

k(M) does not resemble γk(M) as much as
the primed versions of αk(M) and βk(M) resemble their original
versions, but because of the numerical issues we will now discuss,
it will be useful for us to have only non-negative shape invariants.

3.4. Numerical considerations

Since the spherical harmonic expansions of the functions
A(M; ·) and b(M; ·) converge, it follows from Parseval’s identity
that the invariants αk(M), βk(M), and γk(M) tend to zero. They
would even decay exponentially if the functions were smooth
(see [28, p. 1151] for a quick proof). In fact, neither function
is smooth: the first is a finite convex sum of the non-smooth
functions u ↦→ |u · ni|, and the second is support function of a
polytope, namely the convex hull of the differences of all pairs
of vertices in the triangulated surface. However, experimentally
(and perhaps due to the great number and small size of the
triangles in our triangulated surfaces) the batch of invariants
we computed does exhibit exponential decay. Therefore, the last
rows of our basic Euclidean representation

El(M) :=

⎛⎜⎝α0(M) β0(M) γ0(M)
...

...
...

αl(M) βl(M) γl(M)

⎞⎟⎠ ,

will be nearly all zero for even relatively small values of l. We
ould prefer to deal with invariants that decay at a slower rate
o give some, but not too much, weight to higher harmonics. To
e precise, what worked for us was a t ↦→ 1/t decay. To achieve
his we change α′

k(M) for

s
k(M) :=

{
− ln(α′

k(M))−1 if α′

k(M) > 0,
0 if α′

k(M) = 0.

Similarly, we change β ′

k(M) for

βs
k(M) :=

{
− ln(β ′

k(M))−1 if β ′

k(M) > 0,
′
0 if βk(M) = 0,
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nd, lastly, we change γ ′

k(M) for

s
k (M) :=

{
− ln(γ ′

k(M))−1 if γ ′

k(M) > 0,
0 if γ ′

k(M) = 0.

From now on we will be working with the modified shape
nvariant

s
l (M) :=

⎛⎜⎝αs
0(M) βs

0(M) γ s
0 (M)

...
...

...

αs
l (M) βs

l (M) γ s
l (M)

⎞⎟⎠ .

3.5. Representation of surfaces and surface evolution

The final aim of all the preceding mathematics is to represent
surfaces as points and discrete surface motions as polygonal
curves in a suitable feature vector space. We consider two types
of representation, both of which are independent of the param-
eterization of the surface: a translation-invariant representation
and a shape-invariant representation.

To obtain a translation-invariant representation of a surface M
we take a regular sample of n latitude angles, along with a regular
sample of n longitude angles of the sphere. We combine them to
obtain a spherical grid with n2 nodes u1, . . . , un2 and represent

by one of the following vectors:

1. The breadths feature vector(
b(M; u1), . . . , b(M; un2 )

)
∈ Rn2 .

2. The areas feature vector(
A(M; u1), . . . , A(M; un2 )

)
∈ Rn2 .

3. The areas & breadths feature vector which is obtained by
joining the previous two:(

A(M; u1), . . . , A(M; un2 ), b(M; u1), . . . , b(M; un2 )
)
.

To obtain a shape-invariant representation of M we take a
similar spherical grid of 16n2 nodes and use the values of A(M; ·)
and b(M; ·) on these nodes to compute the shape-invariant matrix
Es
n−1. Since we wish to understand how discerning the energies

of the breadth and the weighted area functions are, we shall also
consider the first two columns of Es

n−1 separately. This gives us
three shape-invariant feature vectors:

4. The area spectrum:

(αs
0(M), . . . , αs

n−1(M)).

5. The breadth spectrum:

(βs
0(M), . . . , βs

n−1(M)).

6. The shape invariant Es
n−1.

In this paper we will set n = 8 and hence when dealing with
translation-invariant feature vectors we will be working either
in R64 or R128, and when dealing with shape-invariant feature
vectors we will be working either in R8 or R24. In all cases we
will be using the standard Euclidean metric in these spaces to
compare surfaces through their associated vectors.

In order to analyze human motion, we need to find a represen-
tation for a sequence of surfaces with timestamps, (M0, t0), . . . ,
(Mp, tp). Using any one of the six feature vectors described above
we associate to this sequence a parametrized polygonal curve in
a feature vector space: if f (M) denotes our feature vector, we
construct the polygonal curve whose vertices are xj := f (Mj), and
for which the parameterization in each segment xjxj+1 is given
by

t ↦−→
t − tj+1 xj +

t − tj xj+1
tj − tj+1 tj+1 − tj
50
Fig. 4. Walking motion from CVSSP3D dataset.

or tj ≤ t ≤ tj+1 and 0 ≤ j ≤ p − 1.
By this procedure the problem of comparing two human mo-

ions, or any other two discrete surface motions, is then reduced
o that of choosing a suitable feature vector and comparing the
wo parametrized polygonal curves associated to the motions.

. Experiments

.1. Evaluation setup

We test the usefulness of the proposed descriptors in two ap-
lications: static 3D human pose and 3D human motion retrieval.
Metric evaluation. We use three evaluation measures. For all

easures a high score implies better results.

1. Nearest neighbor (NN): It equals one if the nearest neigh-
bor is of the same class of the query, 0 otherwise. This
statistic provides an indication of how well a nearest neigh-
bor classifier would perform.

2. First-tier (FT), Second-tier (ST): the percentage of models
in the query’s class C that appear within the top K matches,
K depending on query’s class size. For a class with |C |

members, K = |C |−1 for the first tier, and K = 2×(|C |−1)
for the second tier.

he score displayed in evaluation tables are the mean scores
omputed over the dataset.

.2. Datasets

AUST dataset. The FAUST dataset [29], originally designed for
esh registrations, consists of 3D scans of 10 subjects in 30
ifferent poses and is divided into training and testing sets. In
he training set the 3D surfaces are registered to the SMPL human
ody template. We use those registrations, which are available for
0 different poses, as a dataset for static human pose retrieval.
ome samples are shown in Fig. 1.

VSSP3D dataset. The CVSSP3D dataset [7] is a 3D human motion
ataset created for surface animation. It contains two parts: (1)
synthetic dataset, which contains artificial surfaces animated
sing known motion capture sequences, and (2) a real dataset,
hich contains reconstruction of human motions from video
equences. We summarize them as follows:

• Real dataset. This dataset contains 8 models performing 12
different motions: walk, run, jump, bend, hand wave (inter-
action between two models), jump in place, sit and stand up,
run and fall, walk and sit, run then jump and walk, hand-
shake (interaction between two models), pull. The number
of vertices for each model vary around 35000. The sampling
of the sequences is set to 25 Hz.
As the reader can see in Fig. 4, some of the motions in this
dataset represent humans moving in loose-fitting clothes.
The sensitivity of the reconstructed surface to clothes in-
duces presence of noise in the meshes (see Fig. 8) which

makes it a challenge for 3D human motion retrieval.
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Fig. 5. Slow walking motion from CVSSP3D synthetic dataset.

• Synthetic dataset. A synthetic model (1290 vertices and 2108
faces) is animated thanks to real motion skeleton data.
Fourteen individuals performed each 28 different motions:
sneak, walk (slow, fast, turn left/right, circle left/right, cool,
cowboy, elderly, tired, macho, march, mickey, sexy, dainty),
run (slow, fast, turn right/left, circle left/right), sprint, vogue,
faint, rock n’roll, shoot. It has already been used [19] for
static shape evaluation in the context of 3D motion analysis.
A motion from this dataset is presented in Fig. 5. The
sampling of the sequences is set to 25 Hz.

.3. Static pose retrieval on the FAUST dataset

Each pose of a dataset is considered as a query belonging
o some class. We compute the Euclidean distance between the
uery pose descriptors and each pose in the dataset (Fig. 6).
Comparison with state-of-the-art. In order to evaluate our

escriptor against available methods in the literature, we com-
are to the following approaches:

1. Skinned Multi-Person Linear model (SMPL) pose represen-
tation. The SMPL body model [30] is composed of three
parts: a template mesh, a pose vector, and a shape vector.
The shape vector represents the (non-rigid) deformation of
the template to the shape of the given human body. The
pose information of a skeletal joint is the relative rotation
of the joint of the skeleton compared to its parent joint,
and is stored either as the rotation matrix or as axis–
angle representation. We convert each joint rotation to
quaternion representation as in [16,17] and measure the
distance between unit quaternions by d(q, q′) = 1 − |q.q′

|.
The SMPL body pose vector contains the pose information
of 52 joints, and the rotation of the central joint accounts
for the global rotation of the shape. The representation is
a point in (R4)51 = R204. Due to the construction of the
pose vector, this descriptor is rotation invariant. However,
this method is time consuming compared to ours because
of the needed fitting operation to the mesh.

2. Aumentado-Armstrong et al. [16] propose Geometrically
Disentangled VAE (GDVAE), a point cloud variational au-
toencoder which is trained to disentangle the intrinsic
and extrinsic informations of a given shape in the latent
space. The authors propose the intrinsic and extrinsic la-
tent vectors for human shape representation. We used the
FAUST meshes as input of their available trained network,
gathered their extrinsic latent vectors (belonging to R12),
and used them for human pose retrieval. Although the
procedure is parameterization invariant by nature (the net-
works takes a cloud of points as input), the training uses
the mesh Laplacian as ground truth information, and this
means a constant parameterization along the training set.
The network is trained on the SURREAL dataset [31] in such
a way as to be rotation invariant.
51
able 3
omputation time for feature extraction for each method on the FAUST dataset.
he computations were performed with NumPy routines on a Intel(R) Core(TM)
5-7600K 3.8 GHz CPU, with 8 GB of RAM available, except for SMPL, for which
he given method needed the use of a GPU.
Representation Computation time

Areas 4.1 ms
Breadths 13.2 ms
Areas & Breadths 17.2 ms
GDVAE [16] 190 ms
Zhou et al. [17] 30.7 ms
SMPL pose vector ≈5 min

3. Zhou et al. [17] propose a mesh autoencoder based on the
Neural3DMM [32] graph neural network structure. As in
the case of GDVAE, this autoencoder disentangles shape
and pose in latent space. The network requires that all
input meshes have the same parameterization. We apply
the FAUST meshes on their available network trained on
the AMASS dataset, and use the pose latent vector (be-
longing to R112) as a descriptor for comparison. Since the
input of the network are the coordinates of the vertices, the
approach is not rotation invariant.

Table 2 displays the results obtained for the Areas, Breadths,
and Areas &Breaths descriptors. The results for the Breadths
descriptor is of particular interest as it is here where we see the
high correlation between poses and their (symmetrized) convex
hull, which validates our main hypothesis. In fact, Breadth by
itself outperforms all previous methods in the NN criterion. When
complemented by areas, the performance improves by 3%. The
results also show that the SMPL pose vector performs much
better for the FT and ST metrics. This result can be explained
by the fact that SMPL has been designed specifically for human
shapes. In addition, the SMPL fitting method used here requires
a dataset of meshes registered to a template. The Table 3 shows
that our approach is faster than all the methods. It shows also
that the computation time of SMPL descriptor is very high.

4.4. 3D human motion retrieval on CVSSP3D artificial dataset

Each mesh sequence of a dataset is considered as a query be-
longing to some class. We compute the DTW similarity between
the query mesh sequence and each mesh sequence in the dataset
(Fig. 7).

Comparison with state-of-the-art. An extensive comparison
has been made in [22] to evaluate a bench of descriptors for
human motion retrieval. The polygonal curves of those descrip-
tors are filtered with a temporal filtering approach(a mean filter
is applied along a temporal window of size K ). Finally, the dy-
namic time warping distance is used for comparing the resulting
curves. We compare our invariant descriptors (breadth and area
spectrum, shape invariant) to the euclidean and parameterization
invariant features presented in [22], which are:

1. Shape Distribution [22,33] is a 3D descriptor based on
pairwise distances. All pairwise distances of a given shape
are computed, and the resulting descriptor is an histogram
of the obtained distances.

2. Spin Images [22,34] is a 3D shape descriptor based on local
features. For each point of a shape, a view from the point
(the spin image) is computed, which takes the form of a 2D
histogram. The resulting descriptor is the sum of all spin
images.

3. The pretrained GDVAE on SURREAL is applied directly on
the dataset. It does not need any supplementary work since
the network (PointNet) is parameterization invariant.
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Fig. 6. Overview of our pose retrieval approach: We first compute the descriptors (Areas/Breadths or Areas &Breadths) of all shapes in the database. Given a query
shape, we compute its corresponding descriptor and collect the closest shapes in the descriptor space.
Fig. 7. Overview of our motion retrieval approach. We first compute the time series of descriptors (areas/breadth spectra or shape invariant) of all motions in the
database. Given a query shape, we compute its corresponding time series and compare it against the time series of the database in the descriptor space using
dynamic time warping. We then collect the closest motions given this similarity.
4. The Neural3DMM autoencoder from [17] needs to be specif-
ically trained on the CVSSP3D artificial dataset, since the
network is set to specific mesh parameterization and align-
ment. In order to be fair to the other methods that were not
trained on the dataset, we apply a cross identity validation
to compute the score. For each individual, we remove its
motions from the training dataset. We then compute the
retrieval scores for the individual motions using the trained
pose representation. The training setting is exactly the
same as in [17].

We report our results on CVSSP3D artificial dataset in Table 4.
The window sizes for temporal filtering applied to Shape Distri-
bution and Spin Images are 9 and 8 respectively as in [22]. Our
method did not require temporal filtering. We observe that the
breadth spectrum has the best performance, near 100%, in all
criteria.

4.5. 3D Human motion retrieval on CVSSP3D real dataset

The CVSSP3D real dataset differs significantly from the artifi-
cial human motion dataset because of the relatively noisy data
(see Fig. 8) and the various kinds of loose-fitting clothes in some
of the models (see Fig. 4 and Table 6). This raises the problem of
making our descriptors more robust. While a thorough study of
this question will be left for a future publication, two conceptually
52
Table 4
CVSSP3D artificial dataset results for motion retrieval using our shape-invariant
representations. The results of Shape Distributions and Spin Images are reported
from [22].
Representation NN FT ST

Area spectrum 81.6 56.6 68.2
Breadth spectrum 100 99.8 100
Shape invariant Es

7 82.1 56.8 68.5
Shape Distribution [22,35] 92.1 88.9 97.2
Spin Images [22,34] 100 87.1 94.1
GDVAE [16] 100 97.6 98.8
Zhou et al. [17] 100 99.6 99.6

simple and easily implemented modifications to our method can
have a significant impact.

The λ-percentile breadth function. The breadth function is partic-
ularly sensitive to outliers: the maximum or the minimum value
of the function x ↦→ u · x can change significantly with a single
noisy vertex x. To make this descriptor more robust we make a
simple change to the support function of a finite set:

Definition 4.1. Given a finite set S ⊂ Rn and a parameter λ,
0 < λ ≤ 100, we define the λ-percentile support function of S
as the function hλ(S, ·) that assigns to a unit vector u ∈ Sn−1 the
λ-th percentile of the values {u·x : x ∈ S}. The λ-percentile breadth
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Fig. 8. Examples of artifacts in the CVSSP3D real dataset.

unction of S is given by

λ(M; u) = hλ(S; u) + hλ(S; −u).

Defined in terms of the vertices of a triangulation, bλ(M; ·) is
not invariant under re-triangulations of the surface for λ < 100.
It is only approximately so if the mesh is fine enough and the
sizes and shapes of all triangles are comparable. Nevertheless, it
is invariant under translations of M and satisfies the equivariance
condition

bλ(RM; u) = bλ(M; R−1u).

Provided we understand the conditions on the meshes of the
surfaces we are working with, we can use bλ(M; ·) as a substitute
of the breadth function in the construction of shape invariants
detailed in Section 3.3. We experimented with various values for
λ and settled on the classic third quartile λ = 75. We call the
function b75(M; u) Q-breadth. The analogue of the shape-invariant
Es
8 computed with the Q-breadth function instead of the breadth

function will be called the Q-shape invariant.

Temporal filtering. Our second trick consists in slightly changing
the way we assign polygonal curves to sequences of surfaces
with timestamps by making use of a special feature of our in-
variants. If we are given a sequence of surfaces we can consider
their average breadth function and their average weighted area
function, and then proceed with the construction of the feature
vectors. Note that for the breadth spectrum, the area spectrum
and the shape invariant this is not the same as averaging the
feature vectors themselves (we tried that too: the results were
not as good). This particularity of our representation allows us
the possibility to perform a simple discrete convolution or tem-
poral filtering on the data: given a sequence of surfaces with
timestamps, (M0, t0), . . . , (Mp, tp) and a number K , 0 < K < p
we consider the timestamped averages of breadth and weighted
area functions, which are both represented here by f to avoid
redundancy,

f̄ti (M; u) :=
1

2K + 1

∑
−K≤j≤K

f (Mi+j; u), K ≤ i ≤ p − K .

With the sequence of timestamped averaged functions

f̄tK (M; u), . . . , f̄tp−K (M; u)

e construct our timestamped feature vectors and the corre-
ponding polygonal curve as described in Section 3.5. Note that
his temporal filtering approach is slightly different from the one
roposed in [22] – our approach is using the specific structure of
ur descriptors. The results of our experiments and comparisons
n the CVSSP3D real dataset are reported in Table 5. Again we
eport the results of Shape distances and Spin Images from [22].
e display in this table the used windows size for temporal
 h

53
Table 5
CVSSP3D real dataset results for motion retrieval using our shape-invariant
representations and their Q-versions. The results of Shape Distributions and Spin
Images are reported from [22]. The K value is the best window size for temporal
filtering, and the displayed score are the corresponding best scores.
Repr. K NN FT ST

Area spectrum 14 67.5 47.0 63.2
Breadth spectrum 15 63.7 39.1 52.5
Q-breadth spectrum 5 80.0 44.8 59.5
Shape invariant Es

7 15 62.5 41.8 57.9
Q-shape invariant 4 82.5 51.3 68.8
Shape Distribution [35] 1 77.5 51.6 65.5
Spin Images [34] 6 66.3 43.2 59.5
GDVAE [16] 14 38.7 31.6 51.6

filtering of each method. For this relatively noisy dataset, the
table clearly shows the advantage of using the spectrum of the
Q-breadth function and the Q-shape invariant.

The results in Table 5 show that the Q-shape invariant out-
performs all other methods, including the deep learning method
GDVAE whose performance drops significantly in the presence
of noise. This can be explained by the noise-sensitivity of the
spectrum of the Laplace–Beltrami Operator.

A remarkable difference between the results in Table 5 and
those of Table 4 is that the first tier measure is quite low com-
pared to the NN measure for all features. In order to give an idea
of how the tier are distributed, a first tier query is illustrated in
Table 6.

4.6. Computation times

Our methods were implemented using Numpy routines, with
no other optimization. The computations were performed with
NumPy routines on a Intel(R) Core(TM) i5-7600K 3.8 GHz CPU,
with 8 GB of RAM available.

In Table 3 we present the computation of each method. For
Zhou et al. [17] and Aumentado-Armstrong et al. [16], we used
the implementation, provided by the authors. For SMPL, we
used the SMPL fitting pipeline proposed by the authors. In Ta-
ble 7 we present the computation time of each method for the
CVSSP3D datasets. For Zhou et al. [17] and Aumentado-Armstrong
et al. [16] (GDVAE) we used the implementation provided by
the authors. For Shape Distribution we use the hybrid Python-
C implementation provided by Nenad Markuš.1 For Spin Images,
we used the C++ implementation provided by the PointCloud
library.2 We can see that our approach is the fastest on FAUST
and CVSSP3D artificial datasets. We observe that the Q-shape in-
variant computation time is a bit slower than Shape Distribution
for our approach in the real dataset — but the performance of our
approach improves the NN criteria by 5%.

5. Conclusion and future work

5.1. Conclusion

We defined a novel human descriptors using purely geomet-
ric information. Our approach is based on the intuition that a
human pose is nearly characterized by its convex hull. Based
on this hypothesis, we introduced three sequences of numerical
surface descriptors that are invariant under reparametrizations,
Euclidean transformations and similarities. We demonstrated the
use of these descriptors by performing pose retrieval and extend-
ing their use to human motion retrieval. Our experiments on the

1 https://nenadmarkus.com/p/shape-distributions
2 https://pointclouds.org/documentation/classpcl_1_1_spin_image_estimation.
tml

https://nenadmarkus.com/p/shape-distributions
https://pointclouds.org/documentation/classpcl_1_1_spin_image_estimation.html
https://pointclouds.org/documentation/classpcl_1_1_spin_image_estimation.html
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irst seven results of a query on the CVSSP3D real dataset using the Q-shape
nvariant as our representation.
Motion Picture

Nikos, Walk (Query)

Jean, Walk

Jon, Walk

Hansung Walk

Chris, Walk

Haidi, Walk

Hansung, Walk, Run and Jump

Nikos, Run

Table 7
Mean computation time of polygonal curves extraction for different methods
in the CVSSP3D datasets, along with the time corresponding to the polygonal
curves in R24 using the Shape invariant Es

7 , and the Q-shape invariant. We put
the number of vertices for each dataset. Methods with an asterisk means that
the implementation is not the official implementation provided by the authors.
Method Real, 37800 vert. Artif., 1290 vert.

Shape Dist. 79.1s* 61.2s*
Spin Image 3h54* 35.7s*
GDVAE 56.4s 2.08s
Shape invariant Es

7 46s 1.7s
Q-shape invariant 209s /

FAUST and CVSSP3D synthetic and real datasets demonstrated
that our method generally outperforms the state-art-methods for
both 3D human pose and motion retrieval including deep learning
approaches.
54
5.2. Future work

Several avenues of future work are worth pursuing. We list
some most promising directions below:

• A first question is to ask if other descriptors [36,37] of con-
vex shapes with similar property as CH or EGI are suitable
for describing the human pose.

• The noisy CVSSP3D real dataset has been a challenge for our
descriptors. Some research should be spent on a statistical
analysis as in [38] to improve performance on noisy data.

• As can be seen in Table 4, the fusion of several descriptors
does not automatically lead to better results. A finer statis-
tical analysis is needed to exploit the existence of different
descriptors.

• It would be interesting to apply the geometric invariant and
easily-computable descriptors proposed in this paper in a
geometric deep learning approaches [18].
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